DTTB System Doppler and Flutter Character

• This presentation seeks to explain some of the questions, particularly in the area of dynamic multipath DTTB character.

Some questions are :

- (1) What are the mechanics of Flutter?
- (2) What amount of flutter or doppler freq. needs to catered for?

DTTB Transmission

The aspects, mechanics and impact of "Flutter" on DTTB reception

NOTE : There are competing doppler shifts. If $\phi = \theta$ Fas = F ie There will be no resultant doppler shift

Fas = F - F * Cos
$$\phi$$
 * Va / c + F * Cos θ * Va / c
As (F * Cos θ * Va / c) = 0 (θ = 90 deg.)
Fas = F - F * Cos ϕ * Va / c
Doppler shift $tg = (Dar + Das - D) / 0.3 uSec$

NOTE : There are adding Doppler shifts

Notes on Aircraft Flutter Scenarios

Notes on the Scenarios :

- **3 D** environments will reduce the doppler shifts related to the angle of the aircraft to the 2- D Scenarios shown
- The 2 D scenarios shown are the worse case
- Maximum reflection is likely to occur when the Incident angle equals the Reflected angle.. The doppler shift is then zero.
- The magnitude of the reflections when there is un-equal Incident and Reflected angle will depend upon the complex shape of the aircraft or vehicle, gain (front ,side and rear) of the receive antenna.
- The magnitudes of the reflections from the aircraft have the potential of being high compared to the terrain obstructed and ground cluttered direct path.

Note : Scenario 5 is all above but with a Pre - ghost.

DVB-T COFDM 8K Doppler Performance Limits

Doppler Performance Outcomes

Outcome from scenarios :

- When the **Doppler** shift is **maximum** the **amplitude** of the ghost is low.
- When the amplitude is maximum the Doppler shift of the ghost is low.
- Up to full Doppler shift with the amplitudes in the range that will affect the DTTB systems (>-15dB echo) may be common.

DTTB Systems Doppler Shift Range

Doppler shift range :

- Up to 160 to 250Hz doppler shift will be experienced over the UHF band.
- Up to 55 to 75Hz doppler shift will be experienced over the VHF band.
- Up to 20 and 70Hz doppler shift will be experienced from vehicles in urban areas in the VHF and UHF bands respectfully.

DTTB Transmission Aircraft Flutter Behaviour

DTTB system performance :

- The COFDM 2K system will allow up to 300Hz doppler shift
- The **COFDM 8K** system may allow up to **75Hz** doppler shift
- The **8VSB** system may allow up to **5Hz** doppler shift

before the picture and the sound is interrupted.

Aircraft Flutter & Doppler Perfomance Conclusion

DTTB system performance :

- The COFDM 2K system is OK for VHF and UHF reception conditions.
- The **COFDM 8K** system is **OK** for **VHF** reception conditions.
- The **8VSB** system is highly susceptible to any flutter from either Aircraft or vehicles.

Compiled by Wayne Dickson SMIREE MIEAust CPEng. Member SMPTE